Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Idealized Modeling and Analysis of the Shuttle Orbiter Wing Leading Edge Impact Data

2007-09-17
2007-01-3882
Some selected segments of the ascent and the on-orbit data from the Space Shuttle flight, STS114, as well as some selected laboratory test article data have been analyzed using wavelets, power spectrum and autocorrelation function. Additionally, a simple approximate noise test was performed on these data segments to confirm the presence or absence of white noise behavior in the data. This study was initially directed at characterizing the on-orbit background against which a signature due to an impact during on-orbit operation could be identified. The laboratory data analyzed here mimic low velocity impact that the Orbiter may be subjected to during the very initial stages of ascent.
Technical Paper

Integrated Use of Data Mining and Statistical Analysis Methods to Analyze Air Traffic Delays

2007-09-17
2007-01-3836
Linear regression is the primary data analysis method used in the development of air traffic delay models. When the data being studied does indeed have an underlying linear model, this approach would produce the best-fitting model as expected. However, it has been argued by ATM researchers [Wieland2005, Evans2004] that the underlying delay models are primarily non-linear. Furthermore, the delays being modeled often depend not only on the observable independent variables being studied but also on other variables not being considered. The traditional regression approach alone may not be best suited to study these type of problems. In this paper, we propose an alternate methodology based on partitioning the data using statistical and decision tree learning methods. We then show the utility of this model in a variety of different ATM modeling problems.
Technical Paper

Solid Waste Processing - An Essential Technology for the Early Phases of Mars Exploration and Colonization

1997-07-01
972272
Terraforming of Mars is the long-term goal of colonization of Mars. However, this process is likely to be a very slow process and conservative estimates involving a synergetic, technocentric approach suggest that it may take around 10,000 years before the planet can be parallel to that of Earth and where humans can live in open systems (Fogg, 1995). Hence, for the foreseeable future, any missions will require habitation within small confined habitats with high biomass to atmospheric mass ratios, thereby requiring that all wastes be recycled. Processing of the wastes will ensure predictability and reliability of the ecosystem and reduce resupply logistics. Solid wastes, though smaller in volume and mass than the liquid wastes, contain more than 90% of the essential elements required by humans and plants.
Technical Paper

Development of Insect Habitat System for Studying Long Duration Circadian Rhythm Changes on Mir Space Station

1997-07-01
972311
A habitat for housing up to 32 Tenebrionid, black body beetles (Trigonoscelis gigas Reitter) has been developed at Ames Research Center for conducting studies to evaluate the effects of long duration spaceflight upon insect circadian timing systems. This habitat, identified as the Beetle Kit, provides an automatically controlled lighting system and activity and temperature recording devices, as well as individual beetle enclosures. Each of the 32 enclosures in a Beetle Kit allows for ad lib movement of the beetle as well as ventilation of the beetle enclosure via an externally operated hand pump. Two Beetle Kits were launched on STS-84 (Shuttle-Mir Mission-06) on May 15, 1997 and were transferred to the Priroda module of the Russian Mir space station on May 18 as part of the NASA/Mir Phase 1 Science Program. Following the Progress collision with Spektr on June 25, the Kits were transferred to the Kristall module. The beetles will remain on Mir for approximately 135 days.
Technical Paper

Accommodating Rodents During Extended Microgravity Missions

1997-07-01
972306
This study examines the current state of the art in rodent habitats as well as the next generation of rodent habitats currently under development at NASAs Ames Research Center. Space Shuttle missions are currently limited in duration to just over two weeks. In contrast to this, future life science missions aboard the Space Station may last months or even years. This will make resource conservation and utilization critical issues in the development of rodent habitats for extended microgravity missions. Emphasis is placed on defining rodent requirements for extended space flights of up to 90 days, and on improving habitability and extending the useful performance life of rodent habitats.
Technical Paper

Development of the Standard Interface Glovebox (SIGB) for use on Shuttle, MIR, and International Space Station

1997-07-01
972310
An innovative design that meets both Shuttle and Space Station requirements for a user-friendly, volume-efficient, portable glovebox system has been developed at Ames Research Center (ARC). The Standard Interface Glovebox (SIGB) has been designed as a two Middeck locker-sized system that mounts in a Middeck Rack Structure (MRS) or in any rack using the Standard Interface Rack (SIR) rail spacing. The MRS provides structural support for the SIGB during all aspects of the mission and is an interface consistent with NASA's desire for commonality of mechanical interfaces, allowing the SIGB to be flown on essentially any manned space platform. The SIGB provides an enclosed work volume which operates at negative pressure relative to ambient, as well as excellent lighting and ample work volume for anticipated life sciences-related experiment operations inflight.
Technical Paper

Cold Weather Wind Turbines - A Joint NASA/NSF/DOE Effort in Technology Transfer and Commercialization

1997-07-01
972510
Renewable energy sources and their integration with other power sources to support remote communities is of interest for Mars applications as well as Earth communities. The NSF, NASA, and DOE have been jointly supporting development of a 100 kW cold weather wind turbine through grants and SBIR's independently managed by each agency but coordinated by NASA. The NSF grant is specific to address issues associated with the South Pole Application and a 3 kW direct drive unit is currently being tested there in support of the development of the 100 kW unit. An NREL contract is focused on development of the 100 kW direct drive generator. The NASA SBIR is focused on development of the 100 kW direct drive wind turbine.
Technical Paper

Waste Incineration for Resource Recovery in a Bioregenerative Life Support System

1997-07-01
972429
For the last two years, the University of Utah and Reaction Engineering International, in cooperation with NASA Ames Research Center (ARC), have been developing a waste incineration system for regenerative life support systems. The system is designed to burn inedible plant biomass and human waste. The goal is to obtain an exhaust gas clean enough to recycle to either the plant or human habitats. The incineration system, a fluidized bed reactor, has been designed for a 4-person mission. This paper will detail the design of the units. In addition, results will be presented from testing at the University of Utah. Presently, the unit has been shipped to Ames Research Center for more tests prior to delivery to Johnson Space Center for testing in a 90-day, 4-person test.
Technical Paper

On-Orbit and Ground Performance of the PGBA Plant Growth Facility

1997-07-01
972366
PGBA, a plant growth facility developed for commercial space biotechnology research, successfully grew a total of 50 plants (6 species) during 10 days aboard the Space Shuttle Endeavor (STS-77), and has reflown aboard the Space Shuttle Columbia (STS-83 for 4 days and STS-94 for 16 days) with 55 plants and 10 species. The PGBA life support system provides atmospheric, thermal, and humidity control as well as lighting and nutrient supply in a 33 liter microgravity plant growth chamber. The atmosphere treatment system removes ethylene and other hydrocarbons, actively controls CO2 replenishment, and provides passive O2 control. Temperature and humidity are actively controlled.
Technical Paper

Novel Regenerable Incinerator Exhaust Purification and Trace Contaminant Control System Utilizing Humidity Swings

1998-07-13
981760
This paper offers a concept for a regenerable, low-power system for purifying exhaust from a solid waste processor. The innovations in the concept include the use of a closed-loop regeneration cycle for the adsorber, which prevents contaminants from reaching the breathable air before they are destroyed, and the use of a humidity-swing desorption cycle, which uses less power than a thermal desorption cycle and requires no venting of air and water to space vacuum or planetary atmosphere. The process would also serve well as a trace contaminant control system for the air in the closed environment. A systems-level design is presented that shows how both the exhaust and air purification tasks could be performed by one processor. Data measured with a fixed-bed apparatus demonstrate the effects of the humidity swing on regeneration of the adsorbent.
Technical Paper

Steady-State System Mass Balance for the BIO-Plex

1998-07-13
981747
A steady-state system mass balance calculation was performed to investigate design issues regarding the storage and/or processing of solid waste. In the initial stages of BIO-Plex, only a certain percentage of the food requirement will be satisfied through crop growth. Since some food will be supplied to the system, an equivalent amount of waste will accumulate somewhere in the system. It is a system design choice as to where the mass should accumulate in the system. Here we consider two approaches. One is to let solid waste accumulate in order to reduce the amount of material processing that is needed. The second is to process all of the solid waste to reduce solid waste storage and then either resupply oxygen or add physical/chemical (P/C) processors to recover oxygen from the excess carbon dioxide and water that is produced by the solid waste processor.
Technical Paper

Mass Transport in a Spaceflight Plant Growth Chamber

1998-07-13
981553
The Plant Generic BioProcessing Apparatus (PGBA), a plant growth facility developed for commercial space biotechnology research, has flown successfully on 3 spaceflight missions for 4, 10 and 16 days. The environmental control systems of this plant growth chamber (28 liter/0.075 m2) provide atmospheric, thermal, and humidity control, as well as lighting and nutrient supply. Typical performance profiles of water transpiration and dehumidification, carbon dioxide absorption (photosynthesis) and respiration rates in the PGBA unit (on orbit and ground) are presented. Data were collected on single and mixed crops. Design options and considerations for the different sub-systems are compared with those of similar hardware.
Technical Paper

Reproductive Ontogeny of Wheat Grown on the Mir Space Station

1998-07-13
981552
The reproductive ontogeny of ‘Super-Dwarf’ wheat grown on the space station Mir is chronicled from the vegetative phase through flower' development. Changes in the apical meristem associated with transition from the vegetative plhase to floral initiation and development of the reproductive spike were all typical of ‘Super Dwarf’ wheat up to the point of anthesis. Filament elongation, which characteristically occurs just prior to anthesis (during floral development stage 4) and moves the anthers through the stigmatic branches thus facilitating pollination, did not occur in the flowers of spikes grown on Mir. While pollen did form in the anthers, no evidence of pollination or fertilization was observed. Analysis of pollen idlentified abnormalities; the presence of only one nucleus in the pollen as opposed to the normal trinucleate condition is likely an important factor in the sterility observed in wheat grown on Mir.
Technical Paper

An Evaluation of Potential Mars Transit Vehicle Water Treatment Systems

1998-07-13
981538
This paper compares four potential water treatment systems in the context of their applicability to a Mars transit vehicle mission. The systems selected for evaluation are the International Space Station system, a JSC bioreactor-based system, the vapor phase catalytic ammonia removal system, and the direct osmotic concentration system. All systems are evaluated on the basis of their applicability for use in the context of the Mars Reference Mission. Each system is evaluated on the basis of mass equivalency. The results of this analysis indicate that there is effectively no difference between the International Space Station system and the JSC bioreactor configurations. However, the vapor phase catalytic ammonia removal and the direct osmotic concentration systems offer a significantly lower mass equivalency (approximately 1/7 the ISS or bioreactor systems).
Technical Paper

Space Station Lessons Learned from NASA/Mir Fundamental Biology Research Program

1998-07-13
981606
Ames Research Center's Life Sciences Division was responsible for managing the development of fundamental biology flight experiments during the Phase 1 NASA/Mir Science Program. Beginning with astronaut Norm Thagard's historic March, 1995 Soyuz rendezvous with the Mir station and continuing through Andy Thomas' successful return from Mir onboard STS-91 in June, 1998, the NASA/Mir Science Program has provided scientists with unparalleled long duration research opportunities. In addition, the Phase 1 program has yielded many valuable lessons to program and project management personnel who are managing the development of future International Space Station payload elements. This paper summarizes several of the key space station challenges faced and associated lessons learned by the Ames Research Center Fundamental Biology Research Project.
Technical Paper

Development of a Reduced Gravity Test Rig for Waste Management

2008-06-29
2008-01-2049
The space environment presents many challenges to the operation and functioning of life support systems. These challenges include reduced gravity, near vacuum ambient, extreme temperatures, and radiation. Proper testing and modeling of system components to account for these factors will be important for their verification. This paper describes the modeling and design of a reduced gravity test rig for waste management studies. The first investigation planned relate to the functioning of components of the Flexible Membrane Commode (FMC) currently under development at NASA Ames Research Center. The planned reduced gravity tests will be carried out in NASA's C'9 aircraft which provides approximately 25 seconds of reduced gravity per parabolic trajectory. The filling of the commode bag under the influence of a directed air flow will be studied. Simulated waste will be injected and cabin air will be used for directing the waste into the bag.
Technical Paper

Pyrolysis of Mixed Solid Food, Paper, and Packaging Wastes

2008-06-29
2008-01-2050
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid and/or gaseous products. The pyrolysis processing of pure and mixed solid waste streams has been under investigation for several decades for terrestrial use and a few commercial units have been built for niche applications. Pyrolysis has more recently been considered for the processing of mixed solid wastes in space. While pyrolysis units can easily handle mixed solid waste streams, the dependence of the pyrolysis product distribution on the component composition is not well known. It is often assumed that the waste components (e.g., food, paper, plastic) behave independently, but this is a generalization that can usually only be applied to the overall weight loss and not always to the yields of individual gas species.
Technical Paper

Evaluation of the Microwave Enhanced Freeze Drying Technology for Processing Solid Wastes

2008-06-29
2008-01-2051
A Microwave Enhanced Freeze Drying Solid Waste (MEFDSW) processor was delivered to NASA-Ames Research Center by Umpqua Company having been funded through a Small Business Innovative Research Phase II program. The prototype hardware was tested for its performance characteristics and for its functionality with the primary focus being the removal of water from solid wastes. Water removal from wastes enables safe storage of wastes, prevents microbes from growing and propagating using the waste as a substrate and has potential for recovery and reuse of the water. Other objectives included measurements of the power usage and a preliminary estimate of the Equivalent System Mass (ESM) value. These values will be used for comparison with other candidate water removal technologies currently in development.
Technical Paper

The Dynamic Impact of EVA on Lunar Outpost Life Support

2008-06-29
2008-01-2017
Dynamic simulation of the Lunar Outpost habitat life support was undertaken to investigate the impact of Extravehicular Activity (EVA). The preparatory static analysis and some supporting data are reported in another paper. (Jones, 2008-01-2184) Dynamic simulation is useful in understanding systems interactions, buffer needs, control approaches, and responses to failures and changes. A simulation of the Lunar outpost habitat life support was developed in MATLAB/Simulink™. The simulation is modular and reconfigurable, and the components are reusable to model other physicochemical (P/C) based recycling systems. EVA impacts the Lunar Outpost life support system design by requiring a significant increase in the direct supply mass of oxygen and water and by reducing the net mass savings of using dehydrated food. The mass cost of EVA depends on the amount and difficulty of the EVA scheduled.
Technical Paper

Advanced Development of the Direct Osmotic Concentration System

2008-06-29
2008-01-2145
Direct osmotic concentration (DOC) is an integrated membrane treatment process designed for the reclamation of spacecraft wastewater. The system includes forward osmosis (FO), membrane evaporation, reverse osmosis (RO) and an aqueous phase catalytic oxidation (APCO) post-treatment unit. This document describes progress in the third year of a four year project to advance hardware maturity of this technology to a level appropriate for human rated testing. The current status of construction and testing of the final deliverable is covered and preliminary calculations of equivalent system mass are funished.
X